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Abstract 
 
When a traditional response surface method (RSM) is used as a meta-model for inequality constraint functions, an 

approximate optimal solution is sometimes actually infeasible in a case where it is active at the constraint boundary. 
The paper proposes a new RSM that ensures the constraint feasibility with respect to an approximate optimal solution. 
Constraint-shifting is suggested in order to secure the constraint feasibility during the sequential approximate optimiza-
tion process. A central composite design is used as a tool for design of experiments. The proposed approach is verified 
through a mathematical function problem and engineering optimization problems to support the proposed strategies. 

 
Keywords: Sequential approximate optimization; Response surface method; Constraint feasibility; Constraint-shifting 

analogy 
 
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 
 

 
1. Introduction 

The response surface method (RSM) [1] has been 
recognized as one of the most efficient approximation 
tools in the context of sequential approximate optimi-
zation (SAO). There has recently been considerable 
attention given to RSM based approximation optimi-
zation in areas of mechanical and aerospace design 
optimization [2-7]. RSM is also an efficient approach 
that contributes to the probabilistic design such as 
robust and/or reliability-based design optimization [8, 
9]. 

A special care should be taken when RSM is used 
as a function approximation tool in the inequality-
constrained optimization problems. Given a number 
of known input-output training data generated from 
design of experiments (DOE), a well-trained RSM 
can be obtained by the least square method that 

minimizes the absolute difference between actual 
outputs and approximate outputs, normally formu-
lated in terms of mean squared error. A conventional 
RSM shows the approximation result such that an 
actual output may be larger or smaller than its corre-
sponding approximate value due to the implementa-
tion of ‘absolute difference’ or ‘mean squared error’ 
between them. In approximate optimization problems, 
the objective function and equality/inequality con-
straints would be described using RSM-based meta-
models. A conventional version of RSM can be sim-
ply applied to the meta-modeling of an objective 
function since the minimized or maximized solution 
would be obtained according to the extent of its meta-
modeling accuracy. However for nonlinear inequality 
constraints, when the optimal design by approximate 
optimization is found on the active constraint bound-
ary, such design is most likely to be actually infeasi-
ble [10, 11]. The advantage of employing meta-
models in the approximate optimization is to obtain 
the reliable design solutions in addition to savings in 
computational costs. One can easily expect that the 
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meta-models have an ability to replace the expensive 
engineering analysis, but its approximate optimal 
solutions may not be accepted if they are actually 
infeasible. It should be noted that the design solution 
should be at least satisfied with design constraint 
rather than simply and solely minimizing or maximiz-
ing the objective function value. 

The present study deals with how efficiently usable 
and feasible design solutions are found in the context 
of RSM-based sequential approximate optimization. 
The paper suggests a new RSM-based meta-model 
that enhances the constraint feasibility with respect to 
approximate optimal solution. The trust region man-
agement scheme and a number of convergence condi-
tions [12, 13] are adopted in the present study. The 
trust management scheme is developed by using the 
pattern search algorithm, and such concept is ex-
plored to unconstrained optimization problems in 
order to secure the global convergence [14, 15]. The 
augmented Lagrangian method facilitates solving 
constrained problems in the context of sequential 
response surface approximation and optimization [12]. 
The interior-point method is implemented to ensure 
the approximation feasibility [13]. The moving least 
square method is introduced in RSM [16]. However, 
such methods require computationally expensive 
sensitivity information, and do not verify the con-
straint feasibility about the approximate optimum. 

In the present study a constraint-shifting (CS) is 
proposed in order to secure the constraint feasibility 
during the RSM-based SAO process. Such strategy is 
analogous to the shifting constraint method used in 
the robust optimization [17, 18]. The present ap-
proach is verified through a constrained mathematical 
function problem and a number of engineering opti-
mization problems in order to support the proposed 
strategies. 
 

2. Response surface method 

The response surface has a model of the form [3]; 
 

( ) ( )y x f x ε= +   (1) 
 
where, y (x) is the unknown function of interest, f (x) 
is a known polynomial function in terms of x, and ε is 
a random error that is assumed to be normally distrib-
uted with mean zero and variance 2σ . The polyno-
mial function, f (x) to approximate, y (x) is typically 
chosen as a 2nd order polynomial in order to accom-

modate the nonlinearity in the model as follows: 
 

2
0

1 1

( )
k k

i i ii i ij i j
i i i j i

f x x x x xβ β β β
= = >

= + + +∑ ∑ ∑∑ (2) 

 
where, k is the number of design variables. The pa-
rameters of ijβ  are determined via the least square 
method which minimizes the squared sum of the de-
viations of predicted values, f (x) from the actual val-
ues, y (x). Such parameters can be obtained byg the 
following relation: 
 

1[ ]T TX X X yβ −=% %   (3) 
 
where, X  is the design matrix calculated from train-
ing data, and y%  is a column vector containing the 
values of the response at each training data. 
 

3. Design of experiments 

A number of training data are required to generate 
the response surface for a function with n design vari-
ables. It is important to employ an efficient quantity 
and distribution of training data over the design space 
of interest. In the present study, response surfaces are 
obtained based on the central composite design 
(CCD) in the context of design of experiments (DOE). 
The CCD in the computer experiments uses a total of 
2 2 1n n+ +  training data, where n is the number of 
design variables. The CCD consists of two-level fac-
torial, the corner points of a hypercube together with 
the center point and star points arranged along the 
axes of the variables and symmetrically positioned 
with respect to the factorial hypercube [12]. It is noted 
that the CCD requires a lower number of design 
points than the full factorial design. Even though, for 
the large dimensionality design problem, the CCD 
becomes unsatisfied, the present study adopts the 
CCD to present the constraint feasibility in construct-
ing the RSM. 
 
4. Inequality constraints 

Suppose there is a 2nd order polynomial with coef-
ficients, ijβ . For a total of L training DOE data, an 
RSM can be obtained by minimizing the absolute 
difference between actual outputs and approximate 
outputs as follows: 
 

Find ijβ   (4) 
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Minimize 2
, ,
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1 ( ( ))
2

L

actual l RSM l ij
l

E g g β
=

= −∑  (5) 

 
where, ,actual lg  and ,RSM lg  are actual and RSM 
(approximate) output values of a response (i.e., con-
straint function), respectively. The result of Eqn. (4) is 
the least square method based response surface as 
shown in Eqn. (3). The general expression for a 
nonlinear inequality constraint, g can be typically 
written as follows: 
 

lower upperp g p≤ ≤   (6) 
 
where plower and pupper are problem parameters, nor-
mally constant values that limit lower and upper 
bounds on constraint, respectively. The discrepancy 
between actual and approximate constraint values in 
Eqn. (5) can be shown in Fig. 1(a), where the viola-
tion of constraint feasibility is detected at some ap-
proximate points so that the approximate optimal 
design *

ax  would happen to be actually infeasible as 
shown in Fig. 1(b) of Reference [10]. Thus, the least 
square method for RSM would be modified by add-
ing two constraint conditions as follows: 
 

Minimize 2
, ,

1

1 ( ( ))
2

L

actual l RSM l ij
l

E g g β
=

= −∑  (7) 

subject to , , ( ) 0actual l RSM l ijg g β− ≤  
for ,( ( ) )actual l ij upperg pβ ≥   (8) 

, , ( ) 0actual l RSM l ijg g β− ≥  
for ,( ( ) )actual l ij lowerg pβ ≤   (9) 

 
A new condition for the upper limit, Eqn. (8) is in-

troduced such that the l-th approximate output 
,RSM lg  should be greater than or equal to the l-th 

actual output ,actual lg  in a case where ,actual lg  is 
greater than or equal to pupper, implying that by mak-
ing such approximate output infeasible, this is not 
selected during the optimization process. It is noted 
that the optimal solution is determined by approxi-
mate value, not actual value in the context of sequen-
tial approximation optimization. The feasibility of an 
actual output could be also guaranteed in a case 
where an approximate output is the same as the upper 
limit of pupper. That is, when the approximate optimal 
solution is obtained on the constraint boundary (i.e., 
the constraint is active), its corresponding actual de-
sign is always less than or equal to the upper limit,  

 
(a) Some approximate designs would be actually infeasible, 
not active 
 

 
(b) An approximate optimal design *

ax  is actually infeasible 
 
Fig. 1. Constraint violation of approximate optimum cited 
from Ref [10]. 

 
resulting in the constraint feasibility. This approach is 
said to be a conservative approximation in terms of 
actual output and approximate output; a formulation 
definitely pushes the unfavorable approximate value 
(i.e., inside of shaded area in Fig. 1(a)) into the infea-
sible region [10]. Eqn. (9) for a lower limit is also 
applied so that the infeasible approximate output be-
low plower is not selected as well. 

Conditions of Eqns. (7) to (9) can be formulated by 
using a sequential unconstrained minimization tech-
nique such as exterior penalty function method [11] 
or Lagrangian multiplier method. However, such 
formulations require a large number of training data 
in order to establish an accurate level of constraint-
conditioned RSM. In a case where the CCD or its 
similar version of DOE is used, the training result is 
not good due to their limited number of sampling 
points so that the alternatives should be employed. 
The paper proposes an efficient constraint-shifting 
that helps secure the constraint feasibility during the 
RSM-based SAO. 
 

5. Constraint-shifting analogy 

The concept of constraint-shifting has been for-
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merly applied in the context of robust optimization 
[18]. The shifting constraint method reformulates the 
robust constraint in terms of the original constraint 
and their derivatives with respect to design variables 
within the design tolerance as follows: 
 

1

| | 0
n

jrobust
j j j i

ii

g
g g x

x
α

=

∂
= + ⋅ ∆ ≤

∂∑   (10) 

 
where, iα  is a positive constant that makes the fea-
sible region more tightened, and ix∆  is the tolerance 
of a design variable. The second term in the right 
hand side of Eqn. (10) is interpreted as the variation 
of a constraint within an allowable region of tolerance, 
describing the robust feasibility. 

Instead of the full formulation described in the ear-
lier section, the present study proposes a new con-
straint-shifting (CS) as follows: 
 

0RSM CS RSM upperg g α− = + ⋅Ω ≤   (11) 
 

There is an analogy between Eqns. (9) and (10). 
The term upperΩ  is not necessary when all of the 
actual constraint values calculated from DOE data are 
less than the upper bound. For the case where there is 
more than one DOE data whose actual constraint 
value is greater than the upper bound (i.e., 

,actual l upperg p≥ ) as shown in Figure 2, count the 
number of such DOE data, denoted by CS

mx , 
( 1,...,m M= ), where M is a total of such counters. 
The next is to evaluate averages of ( )cs

actual mg x  
and ( )CS

RSM mg x . Thus, the added term is written as 
follows: 
 

1 1

1 | ( ) ( ) |
M M

CS CS
upper actual m RSM m

m m

g x g x
M

= =

Ω = −∑ ∑  (12) 

 
Likewise, the lower bound case of ,actual l lowerg p≤  

is expressed as written below. 
 

0RSM CS RSM lowerg g α− = + ⋅Ω ≤   (13) 

1 1

1 | ( ) ( ) |
M M

CS CS
lower actual m RSM m

m m

g x g x
M

= =

Ω = − −∑ ∑  (14) 

 
The value of 1.0α =  is used in the present study. 

It is noted that Eqns. (12) and (14) are quite similar to 
the second term in the right hand side of Eqn. (10). 
That is, the variation of a constraint within an allow-
able region of tolerance is to the robust optimization  

 
 
Fig. 2. Constraint-shifting for upper bound case. 

 
as the averaged difference between ( )cs

actual mg x  and 
( )CS

RSM mg x  within the current DOE space is to the 
constraint-shifting analogy. A function RSMg  is 
moved to the solid curve of RSM CSg −  by the di-
rected amount of upperΩ  as shown in Fig. 2. In a 
case where an approximate optimal solution is ob-
tained at the constraint boundary of the upper bound, 
and its corresponding actual design would be feasible. 
Such solid-curves RSM CSg −  can be successively 
moved toward dotted curves when 1.0α >  is to be 
used. The CS analogy makes approximate constraint 
values conservative, thereby compensating for the 
constraint feasibility. 
 

6. Trust region management 

The constraint-feasible RSM-based SAO is pro-
posed in the present study, wherein the modified ver-
sion of the trust region management scheme and a 
number of convergence conditions are adopted from 
Reference [12]. The steps for the constraint-feasible 
RSM-based SAO together with trust region manage-
ment and move limit strategies are discussed in a 
greater detail for the completeness of the present pa-
per. 

During the k-th iteration of SAO process, the trust 
region kΓ  is defined as follows: 
 

{ :|| || }k k
kx x x hΓ = − ≤   (15) 

 
where, kh  is referred to as a move limit. The design 
accuracy between actual objective function value, 

( )kf x  and approximate objective function value, 
( )kf x%  is evaluated by using kρ  as follows: 

 
0 *

0 *
( ) ( )
( ) ( )

k
k actual k k

k
predicted k k

f x f x
f x f x

ρ ∆ −
= =
∆ −% %

  (16) 
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Fig. 3. Procedure of response surface based SAO for con-
straint feasibility. 
 
where, 0

kx  and *
kx  are starting and final approxi-

mate designs, respectively, during the k-th iteration of 
SAO. The trust region ratio is controlled via kρ  in 
terms of the reduction of approximate optimal objec-
tive function value, k

predicted∆  and the reduction of 
actual optimal objective function value, k

actual∆ . 
Step-1: Initialize the design variable values, and 

suppose initial values such as move limit control con-
stants, 1 2 3, ,γ γ γ  and trust region ratio constant, η . 

Step-2: Perform the DOE process using CCD. 
Step-3: Evaluate the single iteration of the proposed 

RSM-based SAO for constraint feasibility. It is noted 
that for example, the constraint-feasible response 
surface is obtained from Eqns. (11) and/or (13). 

Step-4: Calculate the trust region ratio, kρ  using 
Eqn. (16). 

Step-5: Subsequently, the trust region and the move 
limit are determined as follows: 

Case-1) 0kρ ≤  
This is a case where the approximate objective 

function value at the approximate optimal design is 
reduced even though the actual objective function 
value is not reduced. The design variables are as-
signed as 1k kx x+ =  and the move limit is selected as 

1
1

k kh hγ+ =  for a new design region. 

Case-2) 0 kρ η< <  or 10 k η
ρ

< <  

The predicted reduction k
predicted∆  is more re-

duced than the actual reduction k
actual∆  for 

0 kρ η< < . In this case, design variables are changed 
as *

1k kx x+ =  and the move limit is also taken as 
1

1
k kh hγ+ = . 

Case-3) 1kη ρ< <  or 1 1kη
ρ

< <  

The actual reduction is quite similar to the pre-
dicted reduction so that design variables are assigned 
as *

1k kx x+ =  and the move limit becomes 
1

2
k kh hγ+ = . 
Case-4) 1kρ ≈  
This is a case where the approximate model is al-

most the same as the actual value. If *|| || k
k kx x h− = , 

then 1
3

k kh hγ+ = , otherwise, 1k kh h+ =  and 
*

1k kx x+ = . 
Step-6: Go to Step-2, and do the next iteration 

( 1k k→ + ) of SAO until the convergence conditions 
as written below are satisfied. 
 

1
kρ ε≤   (17) 

1 2| ( ) ( ) |k kf x f x ε−− ≤   (18) 

1
3

| ( ) ( ) |
max(| ( ) |, )

k k

k

f x f x
f x

ε
τ
−−

≤   (19) 

1k kρ ρ −=  and 1
4

| |
max(| |, )

k k

k

x x
x

ε
τ

−−
≤   (20) 

 
where, τ  is the comparison parameter. The SAO is 
converged when the design region should be less than 

1ε . The convergence condition is also met when the 
change between the current and previous objective 
function values should be less than 2ε . Two more 
convergence conditions are considered such that the 
relative rate change of objective function values 
should be less than 3ε , and the relative rate change 
of design variable values between the current and 
previous truss region should be less than 4ε . The 
present study uses a total of four convergence condi-
tions for the termination of the SAO process. The 
proposed procedure of response surface based SAO 
for ensuring constraint feasibility is demonstrated in 
Fig. 3 
 

7. Design applications 

The present study explores a constrained function 
minimization problem and a number of engineering 
optimization problems. For design applications, the 
central composite design (CCD) is used in the context 
of design of experiments. The move limit control 
values are selected as 1 0.25γ = , 2 0.75γ = , and 

3 1.25γ = . The trust region ratio is taken as 0.75η = . 
As an optimizer during the SAO process, the method 
of feasible direction (MFD) is used. 
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7.1 Mathematical function problem 

Consider the following constrained minimization 
problem: 
 

Minimize 2 2
1 20.5f X X= −   (21) 

subject to 2 2
1 1 1 2 20.0372( )g X X X X= + +  

 5 4
1 2189.5614( ) 0X X− − ≤  

 2
2 1 20.0017g X X=  

 3 3
1 21.1488( ) 30.3470 0X X− − − ≤  

 
The numerical data are obtained through CCD, and 

sequential approximation optimization is subse-
quently conducted after the response surface meta-
models are established. Results by two RSM methods 
are compared in Table 1. The ‘proposed RSM’ 
(RSM-CS) facilitates to finally provide an actually 
feasible optimal design while the ‘RSM without con-
straint-shifting’ (RSM) does not. The progressive 
design convergence between actual and approximate 
constraints under RSM-CS is graphically represented 
as shown in Fig. 4. Solid lines indicate actual con-
straints, and dotted lines mean approximate con-
straints. Feasible regions are located on and under 
each of the constraint function curves. The objective 
function contour is not included for the brevity of 
graphs. These results show that the approximate op-
timal design is coincident with its corresponding ac-
tual optimal design that is absolutely feasible. 

 
7.2 Ten-bar planar truss design 

As an example of an engineering design problem, a 
ten-bar truss optimization in Figure 5 is explored. The 
design objective is to find cross sectional areas of 
truss members, Xi (i=1, 10) by minimizing the total 
weight of a structure ( )iW X  with stress constraints 
[19]. The optimization statement is written as follows: 

 
Minimize ( )iW X   (22) 

subject to UpperLower
j j jσ σ σ≤ ≤  

upperlower
i i iX X X≤ ≤  

 
In this design problem, both RSM and RSM-CS fi-

nally produce actually feasible optimal designs with 
the same number of function evaluations as shown in  

 
(a) 1st iteration 

 

 
(b) 2nd iteration 

 

 
(c) 3rd iteration 

 
Fig. 4. Solution convergence during SAO. 

 
Table 2, wherein a non-approximate optimal design is 
also compared. Convergence histories of two methods 
are shown in Figure 6, wherein RSM-CS violates the 
actual constraints two times in the middle of conver-
gence. In the constraint-shifting analogy, 1.0α =  is 
used in Eqns. (11) and (13). The value of 1.0α >  
can make an approximate constraint value more fea-
sible, but it results in such contour being much too 
conservative accompanied with the unexpected in-
crease in objective function value. To maintain the 
approximate optimal solution as always actually fea-
sible during SAO, an adaptive strategy for α  should 
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be implemented. The present study uses a fixed value 
of 1.0α =  for all numerical examples, implying that 
only upperΩ  (or lowerΩ ) term is considered in con-
straint-shifting analogy. 

 
7.3 Cylinder spring 
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Fig. 5. Ten-bar planar truss. 
 

 
 
Fig. 6. Convergence histories of ten-bar planar truss. 

 

 
 
Fig. 7. Convergence histories of cylinder spring design. 

The design objective is to determine the coil diame-
ter (d), the cylinder’s mean diameter (D) and the 
number of active coils (N) by minimizing the weight 
of the cylinder spring subjected to constraints on de-
flection, shear stress and natural frequency with a 
geometrical condition [20]. The mathematical state-
ment of this optimization problem is given as follows: 

 
Minimize 2( 2)f N Dd= +   (23) 

subject to 
3

1 41.0 0
71875

D Ng
d

= − ≤  

 2 3 2
(4 ) 2.46 1.0 0

12566 ( ) 12566
D D dg

d D d d
−

= + − ≤
−

 

 3 2
140.541.0 0dg

D N
= − ≤  

 4 1.0 0
1.5

D dg +
= − ≤  

 0.05 0.20( )d in≤ ≤  
 0.25 1.30( )D in≤ ≤  
 2 15N≤ ≤  

 
where, the number of active coils is treated as con-
tinuous design variable in the present study. RSM-CS 
results in the finally feasible optimal design, while 
RSM doe not as shown in Table 3, wherein a non-
approximate optimal design by I-Design is presented. 
The proposed RSM-CS is also better than RSM in 
terms of the number of function evaluations. Conver-
gence histories of two methods are shown in Figure 7. 
Even though design solutions are infeasible during 
the early stages of SAO, the proposed RSM-CS con-
verges with feasible designs after the third SAO itera-
tion. 
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Fig. 8. Piston design. 
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7.4 Piston design 

The design objective of this problem is to locate the 
piston components, x1, x2, x3, and D by minimizing 
the oil volume when the lever of the piston is lifted up 
from 0deg to 45deg as shown in Fig. 8. The formal 
optimization statement is given as follows [21]: 
 

Minimize 2( ) ( ) / 4f X D b aπ= −   (24) 

subject to cos45 0oQL RF− ≤  
 3 max( ) 0Q L x M− − ≤  
 1.2( ) 0b a a− − ≤  
 2/ 2 0D x− ≤  

 3 3 1 1 2 3
2 2

3 2 1

| ( sin ) ( cos ) |

( )

x x x x x xR
x x x

θ θ− + + −
=

− +
 

  
2 / 4F PDπ=  

 2 2
3 2 1( )a x x x= − +  

 0 2 0 2
3 1 2 3( sin 45 ) ( cos 45 )b x x x x= + + −  

 1 20.05 , , 1,000x x D≤ ≤  
 30.05 120x≤ ≤  
 

where, the payload is Q=10,000lbs, the lever is 
L=240in in length, the maximum allowable bending 
moment of the lever is Mmax=1.8E+06lbs-in, and the 
oil pressure is given as 1,500psi. A number of ine-
quality constraints are imposed; force equilibrium, 
maximum bending moment of the lever, minimum 
piston stroke and geometrical condition are consid-
ered. 

RSM-CS locates the finally feasible optimal design, 
 

 
 
Fig. 9. Convergence histories of piston design. 

while RSM converges to the infeasible design as 
shown in Table 4. Convergence histories of two 
methods are shown in Figure 9, wherein RSM-CS 
converges with feasible designs after the third SAO. 

 
Table 1. Results of mathematical function problem. 
 

 Initial 
design Direct MFD RSM RSM-CS

X1 7.5 5.0 5.0925 5.0 

X2 7.5 5.3275 5.4817 5.3155 

OBJ 28.125 10.8091 10.9080 10.8278 
Final solu-

tion - feasible infeasible feasible 

# of SAO 
iterations - - 3 3 

 
Table 2. Results of ten-bar planar truss. 
 

 Initial 
design

Optimal 
design [19] RSM RSM-CS

X1 5.0 7.90 7.8214 7.9995 

X2 5.0 0.10 0.1124 0.1341 

X3 5.0 8.10 8.2654 8.1568 

X4 5.0 3.90 4.0232 3.9654 

X5 5.0 0.10 0.1214 0.1115 

X6 5.0 0.10 0.1511 0.1024 

X7 5.0 5.80 5.9932 6.1297 

X8 5.0 5.51 5.8516 5.6212 

X9 5.0 3.68 3.9138 3.8013 

X10 5.0 0.14 0.1467 0.1821 

OBJ 2098.2 1498.0 1547.6 1537.9 
Final solu-

tion - feasible feasible Feasible 

# of SAO 
iterations - - 12 12 

 
Table 3. Results of cylinder spring. 
 

 Initial 
design

I-Design 
[20] RSM RSM-CS

d 1.0 0.0534 0.0518 0.0520 

D 2.0 0.3992 0.3585 0.3632 

N 3.0 9.1854 11.2912 11.0212 

OBJ 10.0 0.01273 0.0128 0.0128 
Final solu-

tion - feasible infeasible feasible 

# of SAO 
iterations - - 8 7 



 P. Han et al. / Journal of Mechanical Science and Technology 23 (2009) 2903~2912 2911 
 

  

Table 4. Results of piston design. 
 

 Initial design RSM RSM-CS 

X1 45.0 50.85 50.91 

X2 6.0 3.25 3.27 

X3 115.0 120.0 120.0 

D 3.0 6.53 6.52 

OBJ 206.0 1038.1 1036.4 

Final solution - infeasible Feasible 
# of SAO 
iterations - 6 6 

 

8. Concluding remarks 

The paper discusses a new RSM-based approxima-
tion that ensures the constraint feasibility in the con-
text of sequential approximate optimization. Ap-
proximations of inequality constraint function 
bounded by both lower and upper limits are consid-
ered. It is emphasized that optimal designs obtained 
from approximate optimization strategies may not be 
accepted if they are actually infeasible. A constraint-
shifting analogy is suggested in order to reinforce the 
constraint feasibility during the RSM based SAO 
process. The proposed RSM is validated via a 
mathematical function problem and a number of en-
gineering optimization problems. In design problems, 
the proposed approach locates an approximate opti-
mum within a feasible design domain, while a con-
ventional RSM sometimes results in the actually in-
feasible approximate optimal solution. As further 
research in this context, it would be more valuable to 
apply proposed approach to other approximation and 
meta-modeling techniques such as support vector 
machine and Kriging, etc. when inequality constraints 
should be carefully taken in the context of sequential 
constrained approximate optimization. 
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